
Adaptive Partition-based Level Decomposition Methods for

Solving Two-stage Stochastic Programs with Fixed Recourse

Wim van Ackooij∗ Welington de Oliveira† Yongjia Song‡

February 8, 2018

Abstract

We present a computational study of several strategies to solve two-stage stochastic linear programs
by integrating the adaptive partition-based approach with level decomposition. A partition-based formu-
lation is a relaxation of the original stochastic program, obtained by aggregating variables and constraints
according to a scenario partition. Partition refinements are guided by the optimal second-stage dual vec-
tors computed at certain first-stage solutions. The proposed approaches rely on the level decomposition
with on-demand accuracy to dynamically adjust partitions until an optimal solution is found. Numerical
experiments on a large set of test problems including instances with up to one hundred thousand scenarios
show the effectiveness of the proposed approaches.

Keywords:
Stochastic programming; scenario reduction; level decomposition

1 Introduction

In this paper we are concerned with numerically solving two-stage stochastic linear programming prob-
lems with very large sets of scenarios. In such problems, we explicitly model the fact that a first decision
needs to be taken prior to observing uncertainty and then a potential recourse action can act once this un-
certainty has been revealed. We are concerned with the situation known as fixed recourse, implying that the
duals of all second-stage linear problems share the same feasible set. From an abstract viewpoint two-stage
stochastic programming can be seen as a special case of non-linear non-smooth convex optimization by
considering the second-stage expected cost as a mapping, called Q in the sequel, of the first-stage variables.
The computational challenge then lies in computing this map efficiently, which is immediately related to
the number of considered scenarios.

As a mean to solve the problem faster, a natural idea is to partition the scenario set into clusters, and
approximate function Q using one representative scenario for each cluster, which “aggregates” the infor-
mation in a cluster of scenarios. The idea of using aggregation for solving stochastic programs has a long
history. [2] studies aggregation techniques to obtain optimality bounds. For multistage stochastic linear
programs with a general probability distribution, [38] studies aggregation and disaggregation with respect
to σ-algebras of the underlying probability space. Another concept of aggregation is proposed in [29] for
two-stage stochastic programs, which considers constraints aggregation across different scenarios as well
as constraints within each scenario. An aggregation procedure based on clustering of scenarios is employed
in [18]. A practical implementation of a similar idea wherein scenarios are quantized can be found in [33].
Important contributions on the subject of selecting smaller set of scenarios have been done by using prob-
ability metrics [16, 27], in particular the Wasserstein distance [10]. The idea is to approximate the problem
by a smaller problem defined by a fixed and small partition. The partition is obtained by applying an al-
gorithm based on probability metrics to the set of scenarios. [26] and [7] incorporate the second-stage costs

∗EDF R&D, OSIRIS, France, wim.van.ackooij@gmail.com
†Universidade do Estado do Rio de Janeiro, Brazil, welington@ime.uerj.br
‡Virginia Commonwealth University, USA, ysong3@vcu.edu

1

into the distance function used to define the Wasserstein metric, and show empirically that partitions with
better quality could be obtained. The idea of partitions is also exploited in [30] in order to derive upper and
lower bounds on the optimal value of two-stage stochastic programs. However, computing these bounds
essentially requires solving as many problems as the number of partitions of a given cardinality that can
be found. These bounds are quite general as they do not require a fixed recourse assumption and binary
variables can be considered in the second-stage problems, but can be computationally challenging to ob-
tain. [5] combine progressive hedging and partitioning scenarios in order to solve a set of smaller two-stage
problems related to the considered subsets of scenarios. However, the partition is chosen a priori, although
several strategies have been exploited to help make a good choice.

A second idea to solve the problem faster is to simply compute Q “inexactly”. We begin here by noting
that the typical algorithms will generate a sequence of candidate solutions (called trial points in the sequel)
converging to the optimal solution. It becomes intuitively clear that computing Q with high precision for
early iterates, likely far from an optimal solution, is surely a wasteful use of computing power. Accuracy
will need to be integrated eventually if one is to assert optimality of the resulting solution. These ideas
have been made theoretically precise in the on-demand accuracy framework [6]. The assumption of fixed
recourse can be immediately put to use, as any dual feasible solution will allow us to define a valid cutting
plane for the mapping Q. In particular, whenever a fraction of Q has been computed and it becomes appar-
ent that the current trial point is not optimal, it may be of interest to skip computing the remaining part of
Q. We recall here that Q is the expected value over a large set of scenarios, each of which involves solving
a linear program. This feature has been exploited in a series of publications on on-demand accuracy. Using
such inexact computations combined with stabilization methods has been shown to be quite promising.
One particular method of interest as stabilization is concerned is the level bundle method [12, 21, 34]. The
level bundle method employing inexact oracles with on-demand accuracy has been applied to two-stage
stochastic programs in [6], [37], and [13]. In the stochastic programming context, the level bundle method is
also known as level decomposition, see for instance [37]. The latter work presents an extensive computational
study by analyzing several algorithms for two-stage stochastic linear programs, including the extended for-
mulation, single- and multi-cut variants of the classical L-shaped method [36] and level bundle methods.

1.1 Formal problem statement

Let us make precise the problem of interest. To this end, let X ⊆ R
n1

+ be a polyhedral set, c ∈ R
n1 be a cost

vector, and N be a finite set of scenarios
{

ξ1, ..., ξ|N |

}

, the problem is given by

min
x∈X

cTx+Q(x) , (1)

where Q : Rn1 → R ∪ {+∞} is the recourse function defined by

Q(x) :=
∑

i∈N

piQ(x; ξi) , with Q(x; ξi) := min
y∈R

n2
+

{

qTy | Tix+Wy ≥ hi

}

. (2)

Each scenario i ∈ N occurs with probability pi > 0, and is associated with an outcome ξi = (hi, Ti), where
hi ∈ R

m2 and Ti ∈ R
m2×n1 . We assume that the cost vector q ∈ R

n2 and the recourse matrix W ∈ R
m2×n2

are fixed for all scenarios. Given this assumption, the feasible set of the dual problem to (2) is independent
of the scenario:

Q(x; ξi) = max
λ∈R

m2
+

{

(hi − Tix)
Tλ | WTλ ≤ q

}

. (3)

This property, known as fixed recourse, has been exploited in [6, 17, 35, 37], to develop efficient methods
to solve (1). The key is that any feasible solution λ of (3) provides the useful inequality (hi − Tix)

Tλ ≤
Q(x; ξi), ∀i ∈ N . As will be shown in Sections 2 and 3, inequalities of this type are the working horses of
the proposed approaches for efficiently solving problem (1).

1.2 Contributions of the paper

Instead of applying scenario clustering and scenario reduction techniques to the original set of scenarios N
in a static manner, we propose to update the scenario partitions by applying these techniques dynamically

2

during the iterative solution process to better approximate Q. We aim to devise an exact solution approach
based on the adaptive scenario partitions. In particular, these scenario partitions will be updated according
to the second-stage dual solutions {λi}i∈N corresponding to the intermediate solutions obtained.

The idea of adaptive partitions has already been exploited in the literature such as [11] and [32]. In [32],
the authors propose several schemes to define and update partitions yielding a finitely converging algo-
rithm to solve problems of type (1). The algorithm in [32] solves a sequence of smaller problems based
on scenario partitions, which are referred to as the “partition-based master problems”. The scenario parti-
tions are refined according to the optimal second-stage dual solutions of the scenario subproblems. After a
partition refinement, the partition-based master problem gives a tighter relaxation of the original stochas-
tic program. In addition to partition refinements, it is also possible to merge some scenario clusters back
together in a partition, without weakening the corresponding relaxation bound, thus allowing the parti-
tion size to be kept manageable. In this work we extend [32] by integrating this partition-based solution
framework with decomposition algorithms of the bundle method family. In contrast to [32], we propose
an algorithm that does not require solving the partition-based master problems to optimality. Instead,
the algorithm dynamically updates the partition along the optimization process, which makes it possible
to avoid spending unnecessary time on solving a partition-based master problem with an “unpromising”
partition. This feature, useful to speed up the optimization process, is made possible thanks to the on-
demand accuracy concept proposed in [6]. Here in order to position our work with respect to [37] on level
bundle methods with on-demand accuracy, our contribution is the integration of level decomposition with
the adaptive partition-based framework.

The contributions of this paper can be summarized as follows.

• First, the proposed approaches integrate the adaptive partition-based scheme in [32] with level bundle
methods (with on-demand accuracy), which provides more flexibility in choosing the trial points
to perform partition refinement. This additional flexibility may help to avoid spending too much
computational effort on an unpromising partition.

• Second, we present empirical evidence that the proposed algorithms are effective compared to exist-
ing solution approaches through an extensive computational study.

• Third, we show that for general two-stage stochastic linear programs with fixed recourse, there exists
a particular partition whose corresponding partition-based master problem gives an optimal solution
to the original stochastic program, and the size of this partition is independent of number of scenarios.
This result generalizes the one for the special case on simple recourse proposed in [32].

As a subproduct of our work, we establish a link between the following works on two-stage stochastic
programs: [10, 18, 26] on scenario reduction; [6, 7, 37] on inexact bundle methods; and [32] on the adaptive
partition-based approach.

1.3 Organization of the paper

The rest of the paper is organized as follows. Section 2 reviews some useful properties of the recourse func-
tion, provides a theoretical result on the existence of a small sufficient partition, and studies some strategies
to obtain good-quality partitions. The proposed algorithms along with their convergence analysis are pre-
sented in Section 3. An extensive computational analysis is presented in Section 4, where the proposed
algorithms with various partition refinement schemes are applied to solve a large number of test instances
available in the literature of two-stage stochastic linear programs.

2 Partitions, clustering and approximations of the recourse function

This section is split into the following three subsections. Section 2.1 reviews some properties of the recourse
function and presents the considered aggregated problem, approximating (1); Section 2.2 shows the theoret-
ical contribution of this work on the existence of a partition from which an optimal solution to the original
stochastic program can be obtained, whose size is independent of the number of scenarios; Section 2.3
presents three techniques for choosing partitions. We start by giving a formal definition of a partition.

3

A partition P = {P1, P2, · · · , PL} of the scenario set N is a collection of nonempty subsets of scenarios
such that P1 ∪ P2 ∪ · · · ∪ PL = N , and Pi ∩ Pj = ∅, ∀i, j ∈ {1, 2, . . . , L}, i 6= j. Given a partition P , the

recourse function in (2) is alternatively written by Q(x) =
∑

i∈N piQ(x; ξi) =
∑L

j=1

∑

i∈Pj
piQ(x; ξi) . For

each j = 1, . . . , L, let ξ̄j be a scenario chosen to represent all scenarios in Pj . Associating ξ̄j with a weight
πj =

∑

i∈Pj
pi, the recourse function Q(x) can be approximated by

L
∑

j=1

∑

i∈Pj

piQ(x; ξ̄j) =

L
∑

j=1

Q(x; ξ̄j)
∑

i∈Pj

pi =

L
∑

j=1

πjQ(x; ξ̄j) . (4)

Many different representative scenarios ξ̄j can be chosen for the same partition P , and therefore many
approximating functions of Q are possible for the same P . We emphasize that the approximating function
∑L

j=1 πjQ(x; ξ̄j) can underestimate or overestimate the mapping Q. From an algorithmic point of view,
obtaining lower approximations is more convenient: the (lower) inexact cutting-plane never cuts off the
solution set [6]. If the recourse matrix W and the cost vector q are fixed, a lower approximating function
∑L

j=1 πjQ(x; ξ̄j) of Q can be easily obtained, as shown below.

2.1 Subgradients and lower approximations of Q
As shown in [31, Chap. 2], the recourse function Q is convex and bounded at a given x if the second-stage
problem (2) has nonempty primal and dual feasible sets for each scenario i ∈ N . As a result, whenever
Dom(Q) is nonempty, the function is polyhedral and subdifferentiable, with ∂Q(x) =

∑

i∈N pi∂Q(x; ξi)
[31, Proposition 2.3]. Moreover, [31, Proposition 2.2] show that for any given x ∈ X and ξi such that
Q(x; ξi) is finite, function Q(·; ξi) is subdifferentiable at x, with ∂Q(x; ξi) = −TT

i D(x; ξi), where D(x; ξi) =
argmax{(hi − Tix)

Tλ | WTλ ≤ q, λ ∈ R
m2

+ } is the set of solutions to the dual problem (3).
Let λ be an arbitrary feasible point for (3). Then we have, for all i ∈ N and x ∈ X ,

Q(x; ξi) ≥ (hi − Tix)
Tλ = αi(λ)x+ βi(λ) with

{

αi(λ) := −λTTi

βi(λ) := hT

i λ .
(5)

Moreover, by defining ε :=
∑

i∈N [Q(x; ξi)− (hi − Tix)
Tλ] ≥ 0 one can show that

Q(z) ≥
∑

i∈N

piαi(λ)z +
∑

i∈N

piβi(λ) = Q(x) +
∑

i∈N

piαi(λ)(z − x)− ε ,

for all z ∈ X , i.e.,
∑N

i=1 piαi(λ) ∈ ∂εQ(x).
In the remainder of this work we assume for convenience of presentation that problem (1) has relatively

complete recourse, that is, X ⊆ Dom(Q). Our results can be easily extended to the more general case when
X \ Dom(Q) 6= ∅ by taking into account feasibility cuts.

Representative scenarios as the cluster average. Let πj =
∑

i∈Pj
pi > 0 and a feasible dual solution λ be

given. It follows from (5) that

∑

i∈Pj

pi
πj

Q(x; ξi) ≥
∑

i∈Pj

pi
πj

(αi(λ)x+ βi(λ)) =





∑

i∈Pj

pi
πj

hi −
∑

i∈Pj

pi
πj

Tix





T

λ , ∀ x ∈ X . (6)

In order to obtain the tightest possible lower approximation for
∑

i∈Pj

pi

πj
Q(x; ξi) given by a single feasible

dual solution λ, we consider an optimal solution λavj of the following aggregate linear program:

max
λ∈R

m2
+

{

(havj − T av
j x)Tλ | WTλ ≤ q

}

with

{

havj :=
∑

i∈Pj

pi

πj
hi

T av
j :=

∑

i∈Pj

pi

πj
Ti

∀ j = 1, . . . , L . (7)

4

Let ξavj be defined as ξavj := (havj , T av
j) =

∑

i∈Pj

pi

πj
ξi, and following (3), define the optimal value of (7) as

Q(x; ξavj). We have thus shown that

∑

i∈Pj

pi
πj

Q(x; ξi) ≥ Q(x; ξavj), and therefore, (8)

Q(x) =

L
∑

j=1

πj

∑

i∈Pj

pi
πj

Q(x; ξi) ≥
L
∑

j=1

πjQ(x; ξavj) =: Qav(x), ∀x ∈ X. (9)

Note that the above inequality may not hold if either the recourse matrix W or the cost vector q varies along
different scenarios. Once (7) is solved for all j = 1, . . . , L and given x ∈ X , we can proceed as above and
compute a subgradint αav of the aggregate function Qav at x. It turns out that αav is also an approximate
subgradient of the recourse function Q at x (a property that is exploited by the algorithms given below).
We formalize this result with the following lemma, whose proof follows from simple manipulations of (6)
and (9) (see also [23, Chap. 2]).

Lemma 2.1 Let x ∈ X be given and λavj be a solution of (7) for j = 1, . . . , L. Let αav and βav be defined by

αav := −∑L
j=1 πj(λ

av
j)TT av

j and βav :=
∑L

j=1 πj(h
av
j)Tλavj . Then αav ∈ ∂εQ(x), with ε = Q(x) − Qav(x) ≥ 0.

Moreover, it follows that

Q(z) ≥ αavz + βav = Qav(x) + αav(z − x)− ε, ∀z ∈ X.

Suppose that for a given x ∈ X the approximating function Qav coincides with Q. Then ε = Q(x)−Qav(x) =
0 and αav is a true subgradient of Q at x. Therefore, the quality of the approximating function Qav (under
the assumptions of fixed recourse W and cost q) depends on how different the second-stage dual solutions
are in each scenario cluster in the partition. It thus makes sense to construct a partition P composed of
clusters Pj that contain (nearly) identical dual solutions and approximate problem (1) by:

min
x∈X

cTx+Qav(x), where Qav(x) =

L
∑

j=1

πjQ(x; ξavj) . (10)

This is the main motivation behind the partition scheme of [32], which is extended below.

2.2 Existence of a small sufficient partition

We first show that the partition-based approach proposed in [32] is related to formulation (10) if probabil-

ities pi are identical for all i ∈ N . In this situation the weight πj is given by
|Pj |
|N | , and the average scenario

ξavj becomes ξavj = 1
|Pj |

ξsumj , where ξsumj :=
∑

i∈Pj
ξi, and therefore

1

|Pj |
Q(x; ξsumj) = max

λ∈R
m2
+

{

(

hsumj

|Pj |
−

T sum
j

|Pj |
x

)T

λ

∣

∣

∣

∣

∣

WTλ ≤ q

}

= Q(x; ξavj) .

Moreover, the definition of Qav in (10) yields the relation Qav(x) =
∑L

j=1 πjQ(x; ξavj) = 1
|N |

∑L
j=1 Q(x; ξsumj) ,

and problem (10) is, for the same partition P , equivalent to

min
x∈X

cTx+Qsum(x), with Qsum(x) :=
1

|N |
L
∑

j=1

Q(x; ξsumj) . (11)

We recall that (11) is referred to as the partition-based master problem in [32], and P is called a sufficient
partition if the partition-based problem (11) gives the same optimal objective value as the original stochastic
program (1). Moreover, for the particular case of simple recourse and identical probabilities pi = 1/|N |, [32]
have shown that there exists a sufficient partition of a small size, which is independent of the number of

5

scenarios. We extend this result to any two-stage stochastic linear program with fixed recourse. Assume
that the first-stage feasible set X := {x ∈ R

n1

+ | Ax = b}. Consider the dual formulation of (1):

max
λ,η

bTη +
∑

i∈N

pih
T

i λ
i (12a)

s.t. ATη +
∑

i∈N

piT
T

i λ
i ≤ c (12b)

WTλi ≤ q , λi ∈ R
m2

+ , ∀i ∈ N, η free. (12c)

Let D := {λ ∈ R
m2

+ | WTλ ≤ q} be the dual feasible set of the second-stage problem. Let E = {λ̂l}|E|
l=1

be the set of all the extreme points of D. Given an extreme point optimal solution of (12a), (η∗, λ∗), let

K(l) := {i ∈ N | (λ∗)i = λ̂l}, i.e., the set of scenarios whose corresponding λ∗ is identical to the l-th

extreme point in set E, and let K2 = N \ ⋃|E|
l=1 K(l). Based on Proposition 2.3 of [32], partition P :=

{K(1),K(2), . . . ,K(|E|), {i}i∈K2
} is a sufficient partition. Theorem 2.1 shows that |K2| ≤ n1 −m1, so that

the size of partition P is |P| ≤ n1−m1+ |E|, which is a number that is independent of number of scenarios
N .

Theorem 2.1 Assume that the second-stage feasible set D := {λ ∈ R
m2

+ | WTλ ≤ q} is nondegenerate, i.e.,

all extreme points {λ̂l}|E|
l=1 satisfy exactly m2 inequalities of D as equations (which is satisfied, e.g., if the LICQ

condition holds). Let (x∗, λ∗
1, ..., λ

∗
N) be an optimal solution to (1), let K(l) := {i ∈ N | (λ∗)i = λ̂l}, and let

K2 = N \⋃|E|
l=1 K(l). Then P := {K(1),K(2), . . . ,K(|E|), {i}i∈K2

} is a sufficient partition and |K2| ≤ n1 −m1.

Proof. Let us first note that by [1, Theorem 3.4.1], polyhedron D can be decomposed as D = Dc + D∞,
where D∞ =

{

λ ∈ R
m2

+ | WTλ ≤ 0
}

is the recession cone of D and Dc is a bounded polyhedron. It is clear
that, E, the set of extreme points of D, is also the set of extreme points of Dc. Moreover, at x∗, we may
assume without loss of generality that any λ∗

j decomposes as λ∗
j = µ∗

j + 0, with µ∗
j ∈ Dc. Indeed by (3) if a

nonzero element of the recession cone is needed, along which (hi −Tix) admits a positive component, then
Q(x∗, ξi) = ∞, which contradicts the fact that x∗ ∈ Dom(Q). To the contrary, if (hi − Tix) ≤ 0, 0 ∈ D∞ by
the optimality of x∗.

Following the assumption, any extreme point of D satisfies exactly m2 equations. Let (η∗, λ∗
1, ..., λ

∗
|N |) be

an extreme point optimal dual solution to (1) corresponding to (x∗, λ∗
1, ..., λ

∗
|N |). Then there are at least m1+

Nm2 active constraints in (12) by (η∗, λ∗). Constraints (12b) can contribute at most n1 active constraints, so
there are at least m1 +Nm2 − n1 active constraints from system {(λ1, . . . , λ|N |) | WTλi ≤ q, λi ∈ R

m2

+ , ∀i =
1, 2, . . . , |N |}. Also, we have at most m2 × |E| equations from sets K(1),K(2), . . . ,K(|E|) (since some of
these sets may be empty), so we need at least m1 + (N − |E|)m2 − n1 = m1 + |K2|m2 − n1 equations from
set K2. Since points in set K2 are non-extreme points of D, for each of these points, there are at most m2 − 1
active constraints from D, which altogether contribute |K2|(m2 − 1) equations. Therefore, we have:

|K2|(m2 − 1) ≥ m1 + |K2|m2 − n1,

and |K2| ≤ n1 −m1 follows. �

Theorem 2.1 justifies the adaptive partition-based framework for solving two-stage stochastic programs
with fixed recourse. It shows the existence of a sufficient partition whose size is independent of number
of scenarios. Therefore, when n1 − m1 + |E| � |N |, the large-scale problem (1) can potentially be solved
by the much smaller partition-based problem (11). Computational results shown in Section 4 empirically
verify the effectiveness of the partition-based framework.

2.3 Alternative partition refinement strategies

Although the existence of a sufficient partition is ensured by Theorem 2.1, determining such partition is not
an easy task in general. In order to have a reasonable partition P = {P1, . . . , PL}, [32] suggest to aggregate
similar dual solutions:

Pj := {j1, j2, . . . , jk} such that ‖λk
ji
− λk

jl
‖ ≤ δ, ∀ i, l ∈ N (13)

6

where δ > 0 is a given tolerance parameter and λk
i is a dual optimal solution of (3) with x replaced by the

current point xk of an iterative process. Depending on the number of extreme points |E|, this “absolute”
strategy (13) may fail to yield a small number of components after a refinement. We therefore examine two
alternative approaches, one based on scenario clustering and another employing some ideas from scenario
reduction techniques.

Scenario clustering based on dual solutions. Let λavj be the average of dual solutions λk
i associated to the

component Pj of partition P . One possibility to determine a small partition P consists in finding a (local)
solution of the following combinatorial problem

min
P1,...,PLk

Pj∩Pj=∅ ∀ j 6=l

Lk
∑

j=1

∑

i∈Pj

‖λk
i − λavj ‖2 s.t. P1 ∪ P2 ∪ . . . ∪ PLk

= N, (14)

where Lk is the size of a new partition, which can vary along the iterative process. A local solution to the
above problem can be obtained by applying the well-known K-means algorithm of [24].

Scenario reduction based on dual solutions. Another manner for defining partitions is to employ the
scenario reduction technique proposed in [10], but with distance dij between scenarios ξi and ξj replaced
by distances between dual solutions λk

i and λk
j (for instance dij = ‖λk

i − λk
j ‖). Let I ⊆ {1, 2, . . . , |N |} be a

(local) solution to the following combinatorial optimization problem

min
I

∑

i∈I

pi min
j∈{1,...,|N |}\I

dij s.t. I ⊆ {1, . . . , |N |}, |I| = |N | − Lk , (15)

that can be obtained by one of the heuristics of [15]. A partition P = {P1, . . . , PLk
} is thus constructed by

assigning to the cluster Pj all the scenario indices i ∈ I such that λk
i is the dual solution nearest to the jth

solution λk
sj

with sj ∈ {1, . . . , |N |}\I .
These three alternatives (the absolute strategy (13), scenario clustering, and scenario reduction) are nu-

merically assessed in Section 4.

3 Stabilized cutting-plane algorithms with adaptive partitions

In this section we combine the adaptive partition-based framework with level decomposition for solving
two-stage stochastic linear programs. Our analysis relies on two types of linearizations to approximate the
costly function Q(x) in (1): (a) fine cuts (exact oracle) and (b) coarse cuts (inexact oracle).

3.1 Ingredients of the approach: cutting-plane models, coarse and fine cuts

Let k ∈ Z+ be an iteration counter, ` ∈ Z+ be a partition counter, and let P` be the `-th partition whose
size is L` ≤ |N |. Given a partition P` = {P `

1 , . . . , P
`
L`
}, we define as before that πj =

∑

i∈P `
j
pi and ξavj =

∑

i∈P `
j

pi

πj
ξi, and the resulting average approximation function is Qav

` (x) =
∑L`

j=1 πjQ(x; ξavj).

Coarse cuts. Given an iterate xk ∈ X , a linearization of Qav
` at point xk defines the k-th coarse linearization

for Q at xk:

Q(x) ≥ Qav
` (x) ≥ αav

k x+ βav
k , ∀x ∈ X, with

{

αav
k = −∑L`

j=1 πj(λ
av
j)TT av

j

βav
k =

∑L`

j=1 πj(h
av
j)Tλavj ,

(16)

where λavj is an optimal solution to problem (3) with (x; ξi) replaced by (xk; ξavj). Lemma 2.1 shows that the
above inequality is valid. Let Jc

k be the index set that gathers all the coarse cuts up to iteration k.

7

Fine cuts. A fine cut for function Q is computed at iteration k if all the subproblems (3), with x replaced
by xk, are solved to optimality. Let the corresponding optimal dual solutions be λi for all i ∈ N :

Q(x) ≥ αk x+ βk, ∀x ∈ X, with

{

αk = −∑

i∈N piλ
T

i Ti

βk =
∑

i∈N pih
T

i λi ,
(17)

Note that fine cuts are more expensive to compute than the coarse ones: in order to compute a fine cut,
|N | second-stage problems need to be solved, whereas a coarse cut requires the solution of only L` (≤ |N |)
second-stage subproblems. Let Jf

k be the index set that gathers all the fine cuts up to iteration k.

Cutting-plane approximation. It follows from the convexity of Q, Qav
` , and the definition of the coarse

and fine cuts that the following cutting-plane model gives an underestimate of Q(x):

Q̌k(x) := max

{

max
l∈Jc

k

{αav
l x+ βav

l }, max
l∈J

f

k

{αl x+ βl}
}

, (18)

i.e., Q̌k(x) ≤ Q(x), ∀x ∈ X . Therefore, for any given parameter fk
lev ∈ (−∞,∞) the following relationship

holds: {x ∈ X : cTx + Q(x) ≤ fk
lev} ⊂ {x ∈ X : cTx + Q̌k(x) ≤ fk

lev} . As a consequence, if the right-
hand side level set is empty then the level parameter fk

lev is a lower bound for the optimal value of (1).
The algorithms suggested in this paper will work with a parameter fk

low, a lower estimate of the optimal
value of problem (1). The algorithms, which are variants of the level bundle methods originally proposed
in [21], will update this parameter thanks to the above described mechanism. The following two steps are
the essential working horses of the framework:

• If {x ∈ X : cTx+ Q̌k(x) ≤ fk
lev} = ∅, then fk+1

low is set to fk
lev;

• If {x ∈ X : cTx+ Q̌k(x) ≤ fk
lev} 6= ∅, then fk+1

low receives fk
low and xk+1 is the projection of the stability

center x̂k onto this level set:

xk+1 =







argminx∈X
1
2‖x− x̂k‖2

s.t. (cT + αav
l)x+ βav

l ≤ fk
lev, l ∈ Jc

k

(cT + αl)x+ βl ≤ fk
lev, l ∈ Jf

k

(19)

3.2 Level decomposition with adaptive partitions

We present two level decompositions combined with an adaptive partition scheme. The first and sim-
pler algorithm applies the level bundle method of [20] to solve the partition-based master problem in the
adaptive-partition scheme of [32]. Given a partition P`, the resulting recourse mapping Qav

` is obtained and
the algorithm employs the level decomposition to solve the smaller problem (10) and obtain an approxi-
mate solution x̂. Function Q(x) is then evaluated at x̂ and a partition refinement strategy is applied to refine
P` according to the set of second-stage dual optimal solutions with respect to x̂. The process is repeated
until a solution to problem (1) is found.

The second algorithm employs the level decomposition and partition scheme in a dynamic manner:
instead of solving (10) up to optimality for a given partition P`, the algorithm updates the partition at
certain points yielding decrease of the objective function. Moreover, the algorithm has limited memory,
does not require boundedness of the feasible set and incorporates the concept of on-demand accuracy.

3.2.1 Level decomposition for solving partition-based master problems.

Algorithm 1 starts with a finite lower bound f0
low for the optimal value of (1). It could be obtained by solving

problem (10) with L = 1, P = {N}, i.e., the so-called mean-value problem. The initial partition could also
be chosen by applying either the clustering algorithm (e.g., the K-means algorithm) or scenario reduction
techniques. The resulting optimal value is a lower bound by (9).

Algorithm 1 LEVEL DECOMPOSITION WITH ADAPTIVE PARTITIONS

8

Step 0 (initialization). Let k = 0, ` = 0, κf , κ ∈ (0, 1), and set Jc
0 = Jf

0 = ∅. Choose x̂0 ∈ X , f0
low a given lower bound, a

partition P` = {P1, P2, . . . , PL0
}, and tolerances Tolc ≥ Tol

f > 0. Set z̄0 = fup = ∞.

Step 1 (coarse stopping test). If z̄k − fk
low ≤ Tol

c, go to Step 6. Otherwise, continue.

Step 2 (master problem) Define fk
lev = κfk

low + (1− κ)z̄k. If problem (19) is feasible, obtain xk+1 by solving (19). Otherwise,
set fk+1

low = fk
lev, z̄k+1 = z̄k, Jc

k+1 = Jc
k , and Jf

k+1
= Jf

k . Set x̂k+1 = x̂k, k = k + 1 and go back Step 1.

Step 3 (coarse cut). Compute Q(xk+1; ξavj) for all j = 1, . . . , L`, and let λav
j be the associate dual solution. Compute a coarse

cut as in (16).

Step 4 (stability center updating). Define z̄k+1 = min{z̄k, cTxk+1 + Qav
` (xk+1)}. If z̄k+1 < z̄k − κf (z̄

k − f lev
k) set

x̂k+1 = xk+1. Otherwise, x̂k+1 = x̂k.

Step 5 (inner loop). Update the index sets Jc
k+1 = Jc

k ∪{k+1}, Jf

k+1
= Jf

k . Set fk+1
low = fk

low, k = k+1 and go back to Step
1.

Step 6 (fine stopping test). If fup − fk
low ≤ Tol

f , stop: the point xbest is an Tol
f -solution to problem (1).

Step 7 (fine cut) Set xk+1 = x̂k, compute Q(xk+1; ξi) for all i ∈ N , and let λi be the associate dual solution. Compute a fine
cut as in (17). If cTxk+1 +Q(xk+1) < fup, then set fup = cTxk+1 +Q(xk+1) and xbest = xk+1.

Step 8 (new partition). Obtain a new partition P`+1 by using the absolute rule of [32], the K-means rule (14), etc. Set z̄k+1 =
fup, fk+1

low = fk
low, x̂k+1 = xbest, Jf

k+1
= Jf

k ∪ {k + 1} and Jc
k+1 = Jc

k . Update ` = `+ 1, k = k + 1 and go to Step 1.

To identify if the level set is empty in Step 2, the most natural way is probably to proceed as usual with
solving (19) and let the employed QP solver returns with an infeasibility flag. Note that this is not a wasteful
computation, as it leads to adjusting the level parameter as well as improving the lower bound fk

low.
At the first few iterations `, the partitions P` may not represent the whole set of scenarios well. There-

fore, it makes sense to inexactly solve the partition-based problem (10). This amounts to index the tolerance
Tol

c by `, starting with a larger value for Tolc0 and decrease Tol
c
` along the iterative process.

Step 5 is only accessed after having approximately solved (10) for a given partition P`. When this is the
case, the partition P` is updated to P`+1 and the process continues until the second stopping-test at Step
6 is satisfied. Every time a new partition-based problem (10) is defined we employ previously generated
(coarse and fine) cuts to warmstart the optimization process without cutting off the solution set of (10). This
is possible thanks to inequality (9) and convexity of both functions Q and Qav, which ensures that any valid
cut for Qav is also valid for function Q, as in (16).

We emphasize that the inner loop consisting of Steps 1-5 is a level bundle method applied to Qav, with
an exact oracle for the latter. It terminates finitely as a consequence of [20, Theorem 3.5]. Note further that
Steps 6-8 are nothing but another level bundle method with exact oracle for Q. Finite convergence is once
again ensured by [20, Theorem 3.5]. We formalize this analysis with the following proposition.

Proposition 3.1 Assume that the set X is compact and that X lies in the interior of the domain of Q. If Tolf and
Tol

c are strictly positive, then Algorithm 1 stops after a finite number of steps with a Tolf -solution xbest to problem
(1).

Proof. Note that δ′ > δ > 0 can be found such that X ⊆ B
0(0, δ) ⊆ B(0, δ′) ⊆ intDom(Q) and that

convex mappings are Locally Lipschitz on the interior of their domain by [4, Proposition 2.2.6], where
B(0, δ′) is compact. Consequently Q is Lipschitz continuous on any compact set contained in their domain
by [25, Theorem 1.14]), hence in particular on B

0(0, δ). Say with Lipschitz constant L > 0. This implies by [4,
Proposition 2.1.2] that any subgradient of Q is bounded in norm by L. Note too that Dom(Qav) = Dom(Q)
and a similar analysis can be carried out for Qav. As a consequence, the inner loop consisting of steps 1-5 is
a level bundle method applied to mapping Qav, with an exact oracle for the latter. It terminates finitely as a
consequence of [20, Theorem 3.5].

Note further that the iterations k during which the inner loop is executed have a fixed iteration counter
`. Let K(`) regroup this set of indexes. There exists k(`) ∈ K(`) such that x̂k in Step 4, given to the fine
oracle in Step 7 on termination of the inner loop is equal to xk(`)+1 resulting from the solution of problem
(19). From this viewpoint steps 6-8 are nothing but another level bundle method with exact oracle. Finite
convergence is once again ensured by [20, Theorem 3.5]. �

9

3.2.2 Level decomposition with a unified oracle using adaptive partitions

In this section, we unify the fine and coarse oracles described in Section 3.1, under the framework of level
bundle method with on-demand accuracy. The idea is to maintain a “partly inexact” oracle, a concept in-
troduced by [6], which gives exact function and subgradient information whenever the estimate achieves a
certain descent target γk. This “partly inexact” oracle is defined by a given partition P , which gives αav and
βav if the descent target γk is proved not achievable, and gives exact function and subgradient information
by exactly solving all |N | scenario subproblems, otherwise. The second-stage dual solutions will in turn
guide the refinement of the partition P . This unified oracle could also be designed as a “partly asymptoti-
cally exact” oracle, if the scenario subproblems are solved inexactly given an inexactness threshold εk, and
εk → 0. To be consistent with previous sections, we consider the single-cut variant. A multi-cut version can
be derived similarly.

Algorithm 2 LEVEL DECOMPOSITION WITH A UNIFIED ORACLE BY ADAPTIVE PARTITIONS.

Step 0 (initialization). Let k = 0, ` = 0, κ, κf ∈ (0, 1), τ > 0, and tolerances Tol, Tolg > 0. Choose x0 = x̂0 ∈ X and
obtain an initial upper bound f0

up by computing Q(x̂; ξi), ∀i ∈ N . Choose a partition P0 = {P1, P2, . . . , PL0
} and a

lower bound f0
low. Set v0 = (1− κ)(f0

up − f0
low), J

c
0 = ∅, and Jf

0 = {0}.

Step 1 (first stopping test). If fk
up − fk

low ≤ Tol, stop: x̂k is an Tol-solution to problem (1).

Step 2 (master problem). Define fk
lev = fk

up−vk. If problem (19) is feasible, then obtain xk+1 by solving (19) and corresponding

multipliers tl, with l ∈ Jc
k ∪ Jf

k . Define τk =
∑

l∈Jc
k
∪J

f
k

tl, ĝ
k = (x̂− xk+1)/τk and êk = vk − τk‖ĝ

k‖2.

If problem (19) is infeasible, the update fk+1
low = fk

lev, fk+1
up = fk

up, and vk+1 = (1 − κ)(fk+1
up − fk+1

low). Set Jc
k+1 = Jc

k ,

Jf

k+1
= Jf

k , k = k + 1 and go back Step 1.

Step 3 (second stopping test). If êk ≤ Tol and ‖ĝk‖ ≤ Tolg , stop: the point x̂ is an approximate solution to problem (1).

Step 4 (multiplier attenuation). If τk > τ , update vk+1 = vk/2. Set fk+1
low = fk

low, fk+1
up = fk

up, Jc
k+1 = Jc

k , and Jf

k+1
= Jf

k ,
k = k + 1 and go back Step 2.

Step 5 (oracle call). Select a new descent target γk = fk
up − κfv

k. Compute Q(xk+1; ξavj) for all j = 1, . . . , L`, and let λav
j be

the associate dual solution. Set f = cTxk+1+Qav
` (xk+1). If f > γk, then compute a coarse cut as in (16) and go to Step 7.

Step 6 (partition refinement). Choose a cluster j ∈ {1, . . . , L`}, and do the following tasks:

Compute Q(xk+1; ξi) for all i ∈ P`
j and let λi be the associate dual solution. Refine component P`

j guided by dual
solutions λi, i ∈ P`

j using a refinement strategy. Improve the estimate function value by f = f + (
∑

i∈P`
j
piQ(xk+1) −

πjQ(xk+1; ξavi). If f > γk, compute a semi-coarse cut (16) using mixed coarse/fine information: use λi if available,
otherwise use λav

j . Terminates this Step and move to Step 7. If f ≤ γk, choose a different j ∈ {j = 1, . . . , L`} and repeat
this process. When this Step is finalized, set ` = `+ 1.

Step 7 (stability center updating). If f < γk, declare a Serious Step. Update fk+1
up = f , x̂k+1 = xk+1, vk+1 = min{vk, fk+1

up −

fk
low}. Choose Jf

k+1
such that k + 1 ∈ Jf

k+1
and Jc

k+1 ⊂ Jc
k (e.g. Jf

k+1
= {k + 1} and Jc

k+1 = ∅). If f ≥ γk, declare

a Null Step. Set fk+1
up = fk

up, x̂k+1 = x̂k and vk+1 = vk. Choose Jf

k+1
such that {l ∈ Jf

k : tl > 0} ⊂ Jf

k+1
and choose

Jc
k+1 such that {{l ∈ Jc

k : tl > 0} ∪ {k + 1}} ⊂ Jc
k+1.

In any case, set fk+1
low = fk

low, k = k + 1 and go to Step 1.

Algorithm 2 is a particular version of [6, Algorithm 4.2], corresponding to variant PI2’. As a result,
the convergence analysis of Algorithm 2 follows from [6, Theorem 4.7]. The following proposition gives a
formalization of this assertion.

Proposition 3.2 Assume that the set X lies in the interior of the domain of Q. Suppose that Tol = Tolg = 0.
Then the sequence {x̂k} converges to a point that solves (1). Moreover, at least one the following items hold true i)
limk f

k
up − fk

low = 0, ii) lim infk max{êk, ‖ĝk‖} = 0, where êk and ĝk are defined in Step 2 of Algorithm 2.

Proof. Note that function Q and a subgradient is exactly computed at every serious step. Therefore, Al-
gorithm 2 corresponds to variant PI2’ of Algorithm 4.2 in [6]. Regardless of the accuracy of the computed
subgradient for Q(xk) (coarse αav

k or fine αk), there exists a constant Λ > 0 (c.f. the proof of Proposition 3.1)
such that max{‖c+ αav

k ‖, ‖c+ αk‖} ≤ Λ. Thus Lemma 4.3 of [6] yields the following inequality:

‖xk+1 − xk‖ ≥ (1− κf)
vk

Λ
.

10

Since xk+1 is the projection of x̂k onto a convex set, combined with the above inequality, we have that

‖xk+1 − x̂‖2 ≥ ‖xk − x̂‖2 +
(

(1− κf)
vk

Λ

)2

,

for all iterations issued by the same stability center x̂k = x̂. By using this inequality, Propositions 4.5 and
4.6 of [6] ensure that the sequence {vk} vanishes regardless of whether X ⊆ R

n is bounded or not. Since the
sequence {vk} vanishes, Lemma 4.4 of [6] ensures that i) or ii) holds. Convergence of the whole sequence
{x̂k} is therefore ensured by [6, Propositions 4.5]; see also [6, Theorem 4.7]. �

4 Numerical results

We conduct numerical experiments to test the empirical performances of the proposed approaches. We im-
plement all algorithms in C++ using the commercial solver CPLEX, version 12.5.1. All tests are conducted
on a Linux workstation with four 3.00GHz processors and 8Gb memory. The number of threads is set to be
one. We use an open source numerical linear algebra package, Eigen [14] for large-scale matrix and vector
operations.

In all our implementation, the starting solution is given by solving the mean-value problem. We use
a convergence criterion implying that the relative optimality gap (UB − LB)/UB < 10−4, where UB and
LB are the best upper and lower bound obtained by the algorithm, respectively. After having conducted
several tests to tune parameters, we take the best ones and set the second stopping tolerance parameter
Tolg =

√
n1 × 10−4, and let τ = 10 in Algorithm 2. In our implementation of the cutting plane method

(both the single-cut version and the multi-cut version), we solve the master problem (10) using the dual

simplex method by CPLEX. We add a cut θ ≥ αx+β when the current relaxation solution (θ̂, x̂) violates the

cut by more than a violation threshold of max{1, |θ̂|} × 10−4. For Algorithm 1 we use parameters κ = 0.8,
κf = 0.1, and we set the convergence threshold for the partition-based master problem (10) also using the
relative optimality gap. For Algorithm 2, we use parameters κ = 0.8 and κf = 0.3.

We report the average results over five replications for each instance and sample size. We use the fol-
lowing abbreviations in all tables throughout this section: Time (solution time in seconds), Size (average
partition size), and Iter (number of iterations). For all our tests, we use a time limit of 10800 seconds (three
hours). When the time limit is exceeded by any of the five replications, we report instead the average op-
timality gap obtained when the time limit is met for those instances that cannot be solved within the time
limit, and show in parenthesis the number of replications solved to optimality. If all five replications cannot
be solved within the time limit, we just report the average optimality gap, calculated by (UB − LB)/UB.

4.1 Algorithmic benchmark

In our experiments, we test the following variants of the proposed algorithms: Single-lvl (Algorithm
1), Single-lvl-oda (Algorithm 2), and Single-cp (unregularized version of Algorithm 1, i.e., an overall
cutting plane approach). We also implemented the multi-cut versions of these variants, which yielded
better performances in some instances. For the multi-cut version, since the variable space of the partition-
based master problem formulation (10) changes as the partition is refined, a new master problem is created
for each partition-based master problem. In this case, we store the cut (dual multiplier) information together
with the partition, so that these cuts are reused for the new formulation after a partition refinement. For
the single-cut version, we can just keep a single master problem throughout the algorithm, and the cut
information can be carried over automatically from the original partition to its refined one.

4.2 Instances

We use instances on two-stage stochastic programs with fixed recourse described in [22] (available at
http://pages.cs.wisc.edu/˜swright/stochastic/sampling/) and [8] as a basis to generate our
test cases. The probability distributions of some instances are specified, and in this case, we generate ran-
dom samples with various sample sizes following these distributions. For example, in instance “gbd”,

11

“ssn”, and “LandS”, each random variable follows a discrete probability distribution independently. In
other instances, the probability distribution is implicitly given as a set of scenarios, or a set of blocks. A
scenario represents a realization of all random variables, and a block represents a realization of a subset of
random variables. For these instances, for example, the “DEAK” family of instances and “stormG2”, we
compute the sample mean µ̂ and sample standard deviation σ̂ of each random variable according to the set
of scenarios or blocks, and then generate random samples with various sample sizes following a normal
distribution N (µ̂, 2

3 σ̂). Table 1 provides the sizes of these instances.

Instance First-stage size Second-stage size

DEAK20×20 (20,10) (30,20)
DEAK20×40 (20,10) (60,40)
DEAK20×60 (20,10) (90,60)
DEAK40×20 (40,20) (30,20)
DEAK40×40 (40,20) (60,40)
DEAK40×60 (40,20) (90,60)
DEAK60×20 (60,30) (30,20)
DEAK60×40 (60,30) (60,40)
DEAK60×60 (60,30) (90,60)

LandS (2, 4) (7, 12)
gbd (4, 17) (5, 10)

stormG2 (185,121) (528,1259)
ssn (1,89) (175,706)

Table 1: Profiles of test instances from [22] and [8]. We use (n,m) to denote that the number of variables is
n, and the number of constraints is m.

We consider three scenario sizes for each instance family: 1k, 5k and 10k for “stormG2” and “ssn”,
and 20k, 50k and 100k for all other instances. Although the sample sizes used in our experiments for
instances “LandS” and “gbd” may be a little too big for their problem sizes, which can be verified using
an in-sample and out-of-sample stability test (see, e.g., [19, Chap.4]), we emphasize that our motivation of
using large scenario sizes for these instances is to show the scalability of the proposed approach compared
to the existing alternatives, but not to solve the underlying stochastic program with a given continuous
probability distribution to a certain accuracy. All the test instances are available at https://sites.
google.com/site/yongjiasongshom/research.

4.3 Results

Table 2 shows the performances of our solvers Single-cp, Single-lvl, and Single-lvl-oda (with an ex-
ception of instance ssn, where the multi-cut version yielded a better performance). Notice that the three
solvers have comparable performances for easy instances, such as DEAK20x20, DEAK20x40, DEAK40x20
and DEAK40x40. However, solver Single-cp is outperformed by Single-lvl and Single-lvl-oda in larger
instances. For instance, Single-cp required 5742.7 seconds on average to solve instance DEAK60x40 with
one hundred thousand scenarios, whereas the level solvers were approximately 77% faster. Similar results
were obtained for other difficult problems. Concerning the number of iterations, we record the number
of times that the partition-based master problem is solved in Single-cp and Single-lvl, and we record
the number of times that the fine and coarse oracles are called in Single-lvl-oda. We see that Single-
lvl-oda yielded significantly more iterations switching between the fine and coarse cuts, which indicates
the additional flexibility provided by this algorithm. This additional flexibility does not lead to significant
saving in computational time, and solvers Single-lvl and Single-lvl-oda gave comparable computational
performances on our test instances. We also observe that solver Single-lvl-oda yielded partitions of sig-
nificantly larger sizes than solvers Single-cp and Single-lvl. This is due to the fact that more partition
refinements are performed in Single-lvl-oda.

Table 3 shows the performances of existing algorithms proposed in the literature on the test instances.
In solver Best-Benders, we choose the better one between the single-cut (L-shaped method) and multi-
cut version of Benders decomposition in terms of their average computational performance. In particular,

12

Instances Single-cp Single-lvl Single-lvl-oda
Instance |N | Time Size Iter Time Size Iter Time Size Iter

DEAK20x20 20k 15.2 232 7 14.5 215 7 18.7 207 17
50k 38.5 301 7 38.3 292 7 44.3 238 16
100k 72.5 376 6 83.6 393 7 90.7 280 16

DEAK20x40 20k 15.3 71 3 12.1 53 3 20.3 118 7
50k 29.0 51 3 30.8 60 3 49.5 113 6
100k 67.9 84 3 79.8 116 4 90.0 108 6

DEAK20x60 20k 258.5 7696 4 138.5 7484 4 151.5 10238 22
50k 612.6 15428 4 266.9 13633 4 345.3 22231 21
100k 1651.6 31534 4 484.2 25742 4 680.1 40076 21

DEAK40x20 20k 16.0 234 6 14.8 212 6 19.7 348 17
50k 47.7 419 7 41.8 302 7 52.2 480 19
100k 79.4 416 6 73.1 358 7 104.1 484 17

DEAK40x40 20k 32.6 1282 4 29.2 1369 5 41.3 2645 14
50k 79.0 2052 4 73.1 2220 5 104.8 4660 13
100k 173.4 3109 4 125.0 3071 5 199.5 6872 13

DEAK40x60 20k 356.8 7756 4 215.4 7247 4 190.5 12591 23
50k 916.7 17207 4 571.7 17812 4 480.1 29336 24
100k 2656.5 37985 5 848.6 28638 4 878.6 53739 23

DEAK60x20 20k 165.4 4030 6 84.5 3587 6 109.9 8396 80
50k 463.2 7880 6 173.4 6542 6 221.4 16487 75
100k 1562.5 14342 6 264.7 9759 6 387.3 26093 73

DEAK60x40 20k 1170.1 8470 4 485.8 8496 4 434.8 14997 84
50k 4540.6 19700 5 965.0 19273 5 1155.7 37015 91
100k 5742.7 31366 4 1707.9 34377 5 2049.1 68509 86

DEAK60x60 20k 607.5 8537 4 340.7 7628 4 352.0 15172 36
50k 1668.3 19561 4 741.3 17367 4 745.5 33657 35
100k 3275.8 34953 4 1312.3 34985 5 1423.6 62206 34

LandS 20k 4.2 106 5 4.7 161 6 4.9 160 15
50k 10.0 122 5 11.7 168 6 11.0 148 15
100k 20.8 110 5 23.3 178 6 24.9 179 15

gbd 20k 6.6 427 5 6.4 460 5 10.5 614 29
50k 16.6 564 6 14.0 492 5 24.0 617 27
100k 27.5 453 5 27.5 496 5 51.4 989 29

stormG2 1k 130.5 369 3 56.8 393 3 63.7 533 23
5k 453.4 1409 3 182.3 1485 3 249.1 2187 27

10k 830.6 2308 3 303.5 2712 3 389.8 3796 26

ssn† 1k 65.2 567 3 176.2 606 4 303.7 815 17
5k 335.0 2613 3 1044.3 2682 4 377.7 3845 17

10k 759.5 5002 4 1445.6 5006 4 827.8 7306 19
‘†’: A multicut version is implemented for this family of instances.

Table 2: Average time, average partition size, and number of iterations for solvers Single-cp, Single-lvl,
and Single-lvl-oda for solving two-stage stochastic programs with fixed recourse.

13

in both implementations of Benders decomposition, we solve the Benders master problem using the bar-
rier method by CPLEX. We add a Benders cut when the relaxation solution violates the cut by more than
a violation threshold. We set this threshold to be max{1, |Q(x̂, ξi)|} × 10−4 for the multi-cut version for
each scenario i ∈ N , and max{1, |∑i∈N piQ(x̂, ξi)|} × 10−4 for the single-cut version, where x̂ is the cur-
rent relaxation solution. In solver Level, we implement the level method, which can be seen as applying
Algorithm 1 to a partition P = {{1}, {2}, . . . , {|N |}}, which is essentially the original stochastic program
(1). We emphasize that solvers Best-Benders and Level do not employ any partition scheme. In solver
Merge-Partial, we pick the best computational strategy for the adaptive partition-based approach pro-
posed in [32]. We use the bold font to indicate that the result corresponds to the multi-cut implementation.

Instances Best-Benders Level Merge-Partial

Instance |N | Time Iter Time Iter Time Size Iter

DEAK20x20 20k 37.8 16 31.8 40 15.0 67 7
50k 94.1 16 73.8 38 37.5 80 7

100k 191.2 16 142.6 37 76.5 94 7
DEAK20x40 20k 58.4 7 28.2 22 15.5 38 3

50k 153.8 7 71.9 22 39.2 45 3
100k 323.5 7 141.7 22 77.0 48 3

DEAK20x60 20k 130.6 8 210.2 39 4697.6 4200 4
50k 371.0 8 524.1 38 0.2%(0) 7370 >3

100k 890.6 8 1093.2 39 0.2%(0) 11545 >3
DEAK40x20 20k 55.5 20 35.0 39 14.1 74 6

50k 138.4 20 90.1 39 34.2 90 6
100k 272.4 19 189.7 39 69.5 99 6

DEAK40x40 20k 150.7 21 86.4 40 43.7 463 5
50k 396.0 22 231.5 41 94.2 646 5

100k 810.8 22 471.6 41 171.4 806 5
DEAK40x60 20k 333.5 13 332.4 48 5724.6 4658 4

50k 923.7 13 858.2 49 0.4%(0) 8301 >3
100k 1934.4 13 1624.6 48 0.4%(0) 13158 >3

DEAK60x20 20k 297.9 13 182.0 96 28.4 1056 6
50k 840.7 13 453.6 96 61.5 1679 6

100k 1914.7 13 877.6 94 107.6 2080 6
DEAK60x40 20k 604.0 17 611.8 110 893.5 4197 5

50k 1669.1 17 1432.3 106 4463.8 7562 5
100k 3668.3 17 2962.8 109 0.1%(2) 10794 >5

DEAK60x60 20k 477.0 13 436.7 57 4788.0 4990 3
50k 1334.8 13 1073.0 57 0.5%(0) 9481 >3

100k 2858.4 13 2174.3 57 0.5%(0) 15031 >3
LandS 20k 20.9 19 15.2 34 4.7 41 5

50k 54.8 20 36.6 34 11.6 42 5
100k 110.8 20 69.7 33 23.5 41 5

gbd 20k 32.2 27 25.3 42 5.0 135 5
50k 79.5 27 59.4 41 12.3 142 5

100k 164.5 27 119.5 42 24.7 143 5
stormG2 1k 276.4 84 126.4 49 72.9 336 3

5k 1350.8 85 570.7 46 379.3 1163 3
10k 2838.8 87 1131.5 45 764.7 1915 3

ssn 1k 99.3 17 145.8 45 110.1 381 5
5k 478.5 14 619.5 38 5763.5 1501 7
10k 932.3 13 1395.1 36 -† - -

‘†’: Cannot solve the partition-based master problem after the first refinement.

Table 3: Computational performances of the Benders decomposition (the better one between the single-
cut and multi-cut version), the level method, and the Merge-Partialsolver of [32]. Best-Bendersand
Levelsolvers do not employ the partition-based scheme.

We can see from Table 3 that our proposed approaches work significantly better than the one proposed
in [32] in term of overall computational time. Indeed, [32] solve the partition-based master problem (10) to
optimality using the extended formulation, which could be time consuming to solve if the partition size is
large. Comparing solver Merge-Partial in Table 3 and solvers Single-cp and Single-lvl in Table 2, we
can see that in the setting where a partition-based master problem (10) is solved to optimality before the par-

14

tition is refined, it is computational advantageous to solve the master problem using a cutting plane method
or level method, rather than solving it as a deterministic equivalent linear program. The proposed Algo-
rithm 2 allows the partition to be refined before the partition-based master problem is solved to optimality,
which brings in additional flexibility. We next compare solvers Best-Benders and Level in Table 3 with
solvers Single-cp and Single-lvl in Table 2, respectively. Benders decomposition and level bundle method
are applied to the scenario-based formulation in Best-Benders and Level, and on the other hand, they
are applied in Single-cp and Single-lvl to solve the adaptively refined partition-based formulation. In
general, we can clearly see that it is computational advantageous to apply the adaptive partition-based
framework on the test instances. However, for several instances, solver Best-Benders performed better
than its counterpart Single-cp, which indicates that the adaptive partition scheme is not always the best
alternative when dealing with a pure cutting-plane model. On the other hand, when employed with the
level decomposition (Single-lvl or Single-lvl-oda), the partition-based scheme provided a better perfor-
mance than the (pure) level decomposition in all but one instance. Within the level decomposition, the
partition-based approach provided CPU time reduction of the order of 52% on average.

In order to analyse our results and put them in a convenient form, we next use the performance profiles
[9]. For each solver, we plot the proportion of problems that are solved within a factor of the time required
by the best algorithm: if we denote by tS(p) the time spent by solver S to solve problem p and t∗(p) the best
time for solving problem p, then the proportion of problems solved by S within a factor γ is

ρS(γ) =
number of problems p such that tS(p) ≤ γ t∗(p)

total number of problems
.

The leftmost ordinate value gives the probability of each solver to be the fastest in the benchmark, while
robustness is seen by the rightmost ordinate value, with the proportion of problems solved by each solver.

Figure 4.3 exhibits the performance profiles based on CPU times of different solvers. It can be seen
that the Single-lvl solver, closely followed by Single-lvl-oda, outperforms other solvers, both in terms
of robustness as well as speed. In particular, although the Merge-Partial solver was the fastest solver
in around 23% of all considered problems, eventually it is outperformed by Best-Benders. The level
decomposition is also advantageous over Best-Benders, and becomes more efficient when combined
with the adaptive partition strategy. In particular, Single-lvl can solve around 85% of the instances nearly
four to five times faster than the level decomposition alone, and obtain a speedup of seven times faster
than Best-Benders. We believe that these performance profiles exhibit the potential of combining both
features.

1 2 3 4 5 6 7

γ

0

0.2

0.4

0.6

0.8

1

ρ
(γ

)

Performance profiles: CPU Time

Best-Benders

Level

Merge-Partial

Single-cp

Single-lvl

Single-lvl-oda

Figure 1: Performance profiles on CPU time for different solvers presented in Tables 2 and 3.

15

4.4 Computational performances for various refinement strategies

We next show the computational performances of the partition-based level decomposition using various
refinement strategies. To perform the K-means clustering, we use the C-Clustering library1. In our compu-
tational experiments, we observe that both the K-means clustering algorithm and the fast forward heuristic
algorithm for the scenario reduction [15] are much more time-consuming than the “Absolute” strategy
by [32]. Therefore, we design the refinement strategies in a hybrid manner so that the K-means clustering
or the scenario reduction algorithm is performed only if the absolute strategy fails to yield a small number
of new partition components after a refinement. Specifically, we compare the computational performances
of the following strategies:

• Absolute: Only apply the “absolute” refinement strategy (13) by putting similar scenarios together
according to their pairwise distances.

• Cluster: Suppose a partition component S is to be refined. If |S| ≤ 20, we just perform the “absolute”
refinement strategy according to (13). Otherwise, we first apply the “absolute” refinement strategy on
this partition component S, and suppose we obtain S′ new components after the refinement. We then

use the following strategy to control the size of the new partition after the refinement: if S′ < |S|
5 , we

just include these new components in the new partition; otherwise, we cluster scenarios in S using
the K-means clustering algorithm [24] with K = min{10, |S|/10}.

• Reduction: The same strategy is used as “Cluster”, except that a scenario reduction problem (15)
is solved instead of the clustering algorithm. We set L = |S| − min{10, |S|/10} in (15), so that
min{10, |S|/10} representative scenarios are selected in S and other scenarios are assigned to these
representative scenarios according to their distances. A fast forward algorithm [15] is used to obtain
a quick heuristic solution of (15).

We next show the computational performances of the above three refinement strategies using solver
Single-lvl-oda. We noticed that the performances of the three strategies are very similar when the “abso-
lute” refinement strategy yields a small partition. This is the case for instances DEAK20x20, DEAK20x40,
DEAK40x20, DEAK40x40, LandS, and gbd. We show the performances on the rest of the instances in Table
4.

We can see from Table 4 that in most instance, strategies “Absolute” and “Cluster” yielded comparable
computational performances. Strategy “Cluster” yielded slightly smaller partitions, but on the other hand
took slightly more iterations in most cases. Strategy “Reduction” yielded a more significant partition size
reduction, however, at a price of much more iterations, which resulted in more computational time in most
cases. In particular, strategy “Reduction” failed to solve instance ssn with 10k scenarios within the time
limit. Clearly there is a trade-off between the partition size and the number of iterations using different
strategies of partition refinements.

5 Conclusions

This work extends [32] in both theoretical and computational aspects. Concerning the theoretical side, we
show that for two-stage stochastic linear programs with fixed recourse, there exists a sufficient partition
whose size is independent of number of scenarios, which extends the result in [32] on the special case of
simple recourse. On the computational side, we show how level decomposition can be integrated with the
adaptive partition-based framework to efficiently solve two-stage stochastic programs with a large scenario
set. Two level bundle algorithms based on this idea have been developed. Numerical experiments have
shown that both adaptive partition-based level decomposition methods perform significantly better than
the cutting-plane methods such as the L-shaped method with or without the partition-based framework,
the level method without the partition-based framework, and the extended formulation by [32]. Although
the two partition-based level decomposition approaches gave comparable numerical performance, we em-
phasize that Algorithm 2 is a more general algorithm, and provides more flexibility switching between fine

1http://bonsai.hgc.jp/˜mdehoon/software/cluster/software.htm

16

Instances Absolute Cluster Reduction
Instance |N | Time Size Iter Time Size Iter Time Size Iter

DEAK20x60 20k 151.5 10238 21 122.0 4600 22 213.5 6935 24
50k 345.3 22231 20 292.2 18953 18 333.9 18223 21

100k 680.1 40076 20 570.5 33674 19 693.5 32695 23
DEAK40x60 20k 190.5 12591 23 186.4 11475 23 263.1 11081 33

50k 480.1 29336 24 490.5 25728 26 577.9 22615 32
100k 878.6 53739 23 923.4 48777 26 1276.0 43165 37

DEAK60x20 20k 109.9 8396 79 106.3 8003 78 120.0 8230 85
50k 221.4 16487 75 213.4 15808 73 264.4 15998 86

100k 387.3 26092 73 415.5 27238 76 532.0 30509 87
DEAK60x40 20k 434.8 14996 84 446.8 14383 88 561.2 14269 112

50k 1155.7 37015 91 1088.3 35249 88 1481.8 34274 122
100k 2049.1 68508 86 2055.3 64779 90 2264.2 60656 105

DEAK60x60 20k 352.0 15172 36 307.0 11667 35 499.6 12810 49
50k 745.4 33657 34 724.7 29440 36 1078.7 30735 52

100k 1423.6 62206 34 1431.1 56714 37 1969.9 55882 51
stormG2 1k 63.7 533 23 34.1 273 26 31.2 205 24

5k 249.1 2187 26 169.5 1340 23 175.9 1436 25
10k 389.8 3796 26 372.3 2948 28 402.6 3189 30

ssn 1k 303.7 814 17 333.0 723 19 734.8 528 119
5k 377.7 3845 16 429.5 3479 20 9479.0 2219 469
10k 827.8 7306 18 929.6 6584 21 80.0%(0) >887 >198

Table 4: Average time, average partition size, and number of iterations for the partition-based level decom-
position (Algorithm 2) with different refinement strategies for solving two-stage stochastic programs with
fixed recourse.

and coarse oracles. We also note that the proposed approaches are readily applicable to two-stage stochastic
integer programs with integer variables only in the first stage.

We have identified several future research directions. First, the proposed approaches could be further
improved through specialized acceleration strategies developed for Benders-type algorithms, see. e.g., a
recent survey by [28] on Benders decomposition. Second, although the proposed approaches can handle
instances with very large number of scenarios, instances used in our test remain small with respect to the
number of variables involved in both stages. Analyzing how the proposed approaches would behave when
applied on instances with a large number of decision variables, especially the ones with a combinatorial
nature, would be an interesting follow-up study to conduct. Finally, the partition-based scheme can be
extended for multistage stochastic linear programming problems in, at least, two manners: (a) applying
the partition-based framework in the nested decomposition [3], and (b) extending the partition-based level
decomposition for solving dual formulations arising from the relaxation of the nonanticipative constraints,
[31, Chap.3].

ACKNOWLEDGMENT Yongjia Song acknowledges partial support by the National Science Foundation
under grant CMMI 1562245. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
The authors greatly appreciate valuable comments and suggestions from the editors and two anonymous
referees.

References

[1] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer. Non-Linear Parametric Optimization.
Birkhäuser Basel, 1982.

[2] J. R. Birge. Aggregation bounds in stochastic linear programming. Mathematical Programming, 31(1):25–
41, May 1985.

[3] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New York, 1997.

17

[4] F.H. Clarke. Optimisation and Nonsmooth Analysis. Classics in Applied Mathematics. Society for Indus-
trial and Applied Mathematics, 1987.

[5] T.G. Crainic, M. Hewitt, and W. Rei. Scenario grouping in a progressive heding-based meta-heuristic
for stochastic network design. Computers and Operations Research, 43:90–99, 2014.

[6] W. de Oliveira and C. Sagastizábal. Level bundle methods for oracles with on demand accuracy.
Optimization Methods and Software, 29(6):1180–1209, 2014.

[7] W. de Oliveira, C.A. Sagastizábal, and S. Scheimberg. Inexact bundle methods for two-stage stochastic
programming. SIAM Journal on Optimization, 21(2):517–544, 2011.

[8] I. Deák. Testing successive regression approximations by large-scale two-stage problems. Annals of
Operations Research, 186:83–99, 2011.

[9] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Mathe-
matical Programming, 91:201–213, 2002.

[10] J. Dupačová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in stochastic programming : An
approach using probability metrics. Mathematical Programming, 95(3):493–511, March 2003.

[11] D. Espinoza and E. Moreno. A primal-dual aggregation algorithm for minimizing conditional-value-
at-risk in linear programs. Computational Optimization and Applications, 59:617–638, 2014.

[12] C.I. Fábián. Bundle-type methods for inexact data. In Proceedings of the XXIV Hungarian Operations
Researc Conference (Veszprém, 1999), volume 8 (special issue, T. Csendes and T. Rapcsk, eds.), pages
35–55, 2000.

[13] C.I. Fábián, C. Wolf, A. Koberstein, and L. Suhl. Risk-averse optimization in two-stage stochastic
models: computational aspects and a study. SIAM Journal on Optimization, 25(1):28–52, 2015.

[14] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[15] H. Heitsch and W. Römisch. Scenario reduction algorithms in stochastic programming. Computation
Optimization and Applications, 24(2-3):187–206, 2003.

[16] H. Heitsch and W. Römisch. A note on scenario reduction for two-stage stochastic programs. Opera-
tions Research Letters, 35(6):731–738, 2007.

[17] J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two-stage linear programs with
recourse. Mathematics Of Operations Research, 16(3):650–669, 1991.

[18] D.L.D.D. Jardim, M.E.P. Maceira, and D.M. Falcao. Stochastic streamflow model for hydroelectric
systems using clustering techniques. In Power Tech Proceedings, 2001 IEEE Porto, volume 3, page 6 pp.
vol.3, 2001.

[19] A. King and S. Wallace. Modeling with Stochastic Programming. Springer, New York, 2012.

[20] K.C. Kiwiel. Proximal level bundle methods for convex nondifferentiable optimization, saddle-point
problems and variational inequalities. Math. Programming, 69(1):89–109, 1995.

[21] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods. Math. Programming,
69(1):111–147, 1995.

[22] J. Linderoth, A. Shapiro, and S. Wright. The empirical behavior of sampling methods for stochastic
programming. Annals of Operations Research, 142:215–241, 2006.

[23] I. Litvinchev and V. Tsurkov. Aggregation in Large-Scale Optimization. Applied Optimization 83.
Springer US, 1 edition, 2003.

[24] J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc. 5th
Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1, 281-297 (1967)., 1967.

18

[25] N. G. Markley. Principles of Differential Equations, volume 352 of Pure and Applied Mathematics: A Wiley
Series of Texts, Monographs and Tracts. Wiley-interscience, 1st edition, 2004.

[26] J.M. Morales, S. Pineda, A.J. Conejo, and M. Carrión. Scenario reduction for futures market trading in
electricity markets. IEEE Transactions on Power Systems, 24(2):878–888, May 2009.

[27] G. Ch. Pflug. Scenario tree generation for multiperiod financial optimization by optimal discretization.
Mathematical Programming, 89(2):251–271, 2001.

[28] R. Rahmaniani, T.G. Crainic, M. Gendreau, and W. Rei. The benders decomposition algorithm: A
literature review. European Journal of Operational Research, 259(3):801–817, 2017.

[29] C. H. Rosa and S. Takriti. Improving aggregation bounds for two-stage stochastic programs. Operations
Research Letters, 24(3):127–137, 1999.

[30] B. Sandikçi, N. Kong, and A. J. Schaefer. A hierarchy of bounds for stochastic mixed-integer program-
ming. Mathematical Programming, 138(1):253–272, 2013.

[31] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming. Modeling and Theory,
volume 9 of MPS-SIAM series on optimization. SIAM and MPS, Philadelphia, 2009.

[32] Y. Song and J. Luedtke. An adaptive partition-based approach for solving two-stage stochastic pro-
grams with fixed recourse. SIAM Journal on Optimization, 25(3):1344–1367, 2015.

[33] W. van Ackooij. A comparison of four approaches from stochastic programming for large-scale unit-
commitment. To Appear in EURO Journal on Computational Optimization, pages 1–19, 2015.

[34] W. van Ackooij and W. de Oliveira. Level bundle methods for constrained convex optimization with
various oracles. Computation Optimization and Applications, 57(3):555–597, 2014.

[35] W. van Ackooij and J. Malick. Decomposition algorithm for large-scale two-stage unit-commitment.
Annals of Operations Research, 238(1):587–613, 2016.

[36] R.M. van Slyke and R.J-B. Wets. L-shaped linear programs with applications to optimal control and
stochastic programming. SIAM Journal of Applied Mathematics, 17:638–663, 1969.

[37] C. Wolf, C. I. Fábián, A. Koberstein, and L. Stuhl. Applying oracles of on-demand accuracy in
two-stage stochastic programming a computational study. European Journal of Operational Research,
239(2):437–448, 2014.

[38] S. E. Wright. Primal-dual aggregation and disaggregation for stochastic linear programs. Mathematics
of Operations Research, 19(4):893–908, 1994.

19

